INDIAN SCHOOL AL WADI AL KABIR

Post Mid-Term Examination (2023-24)

Class: VII
Date: 26-11-23

Sub: MATHEMATICS
Set-I MARKING SCHEME

Max Marks: 30
Time: 1 hour

Section A: Multiple Choice Question (Q. 1 to Q.6) of $\mathbf{1}$ mark each

1. \quad Find the value of x in the given figure:

| | A | B | $\mathbf{5 5}^{\circ}$ | C | | D | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2. | | | | | | | |
| | Find the reciprocal of $\left(\frac{-2}{3} \times \frac{5}{3}\right)$ | | | | | | |
| | A | B | C | $\frac{\mathbf{- 9}}{\mathbf{1 0}}$ | D | | |

3. In the triangle $A B C$, point E is the midpoint of the side $B C$, then the median is:

| | A | B | C | | D | AE | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4. Which of the following is equivalent to $\frac{28}{48}$? | | | | | | | |
| | A | B | | C | $\frac{\mathbf{7}}{\mathbf{1 2}}$ | D | |

5. In a triangle, two angles are 46° and 76°. Then the measure of third angle is:
A
 58°
6. The sum of $\frac{5}{4}+\frac{-25}{4}$ is
B
C

D
A
B
B
-5
C
D

Section B: Source based questions (Q. 7 to Q.11) of $\mathbf{1}$ mark each
Ram bought a rhombus shaped land. The adjoining figure show the outline of the land. The diagonals of the rhombus $\mathrm{DB}=10 \mathrm{~m}$ and $\mathrm{AC}=24 \mathrm{~m}$. Based on this context answer the following questions:

7. If the length of the diagonal $A C=24 \mathrm{~m}$, then the length of $\mathrm{OC}=$
A
B
C
\qquad

	A		B		C		D	12 m
8.	The measure of the $\angle C O D=-------$							
	A		B	90°	C		D	
9.	To find the side of the given rhombus which property can be used?							
	A		B		C	Pythagoras property	D	
10.	What is the length of the side DC?							
	A		B	13 m	C		D	

	$\begin{aligned} & \frac{3 \times 2}{5 \times 2} \text { and } \frac{1 \times 5}{2 \times 5}\left(\frac{1}{2} \text { mark }\right) \\ & \frac{6}{10} \text { and } \frac{5}{10}\left(\frac{1}{2}+\frac{1}{2} \text { marks }\right) \\ & \frac{6 \times 10}{10 \times 10} \text { and } \frac{5 \times 10}{10 \times 10}\left(\frac{1}{2} \text { mark }\right) \\ & \frac{60}{100} \text { and } \frac{50}{100}\left(\frac{1}{2} \text { mark }\right) \\ & \frac{51}{10}, \frac{52}{10}, \frac{53}{10} \text { and } \frac{54}{10}(1 \text { mark }) \end{aligned}$	
Section D: Case study (Q. 16 \& Q.17) of 4marks each		
16.	Case Study-1: Manisha and Anisha were making triangular shaped greeting cards for Diwali celebrations. Observe the adjoining figure and answer the following questions: i) If $\triangle Y X Z \cong \triangle B C A$, which criterion can be used to prove the congruence? ii) The measure of $\mathrm{AC}=--------$ iii) $m \angle A C B=$ \qquad iv) $m \angle Y=-----$	
Ans:	i) $\quad \triangle Y X Z \cong \triangle B C A$----SAS congruence ii) The measure of $A C=8 \mathrm{~cm}$ iii) $m \angle A C B=65^{\circ}$ iv) $\begin{aligned} m \angle Y=180-(65+ & 50) \\ & =180-115 \\ & =65^{\circ} \end{aligned}$	(1 mark each)

17.	Case Study-2: The Planning commission ordered to make three tunnels for the sewage water connections to connect three cities (E, G and F) in a state. Also, they told there must be a common point D, such that one can view all the three cities through the tunnels. So, they made an outline diagram for that. Based on this, answer the following questions: i) If $D E=D F$, What type of triangle is $\triangle D E F$ ii) Find the value of a, b and c.	
Ans:	i) If $D E=D F$, What type of triangle is Δ DEF---- Isosceles triangle $\text { ii) } \quad \begin{aligned} & \mathbf{a}=180-(60+45)=180-105=75^{\circ} \\ & \quad \mathbf{b}=180-75=105^{\circ} \text { or } 60+45=105^{\circ} \\ & \mathbf{c}=180-(60+105) \\ &=180-165=15^{\circ} \text { or } 60-45=15^{\circ} \end{aligned}$	(1 mark each answer)
